SalesLogix Recurring Activity Data – 101

The purpose of this document is to shed a little light on the data storage format of recurring information related to an activity (Field ACTIVITY.RECURRING is TRUE).  I will explain how to read/write information to the following fields in the activity table: RECURITERATIONS, RECURPERIOD, RECURPERIODSPEC, and RECURSKIP.

Note: When I start talking about bit shifting below, I’ll use Object Pascal notation:


SHL = Shift Left


SHR = Shift Right


AND = Bitwise AND


OR = Bitwise OR

RECURITERATIONS Field:

All right, let’s start with the easy ones!  This field just contains an integer that tells you how many times the activity will be repeated.

RECURPERIOD Field:

Recurperiod tells you what kind of recurrence we have.  The potential values are as follows:

0 – Daily

1 – Day Completed:  Not covered in this document.

2 – Weekly

3 – Week Completed:  Not covered in this document.

4 – Monthly:  Every month on the <nth>

5 – Day Of Month:  The <nth> day of the <nth> week of the month

6 – MonthCompleted:  Not covered in this document.

7 – Yearly:  Repeated on <month/day> each year

8 – Day Of Year:  The <nth> day of the <nth> week of the <nth> month of the year 

9 – Year Completed – Not covered in this document.

RECURPERIODSPEC Field:

Now we get to the fun stuff.  RecurPeriodSpec is a 32 bit integer that is actually broken down in to two 16 bit integers.  I will refer to these two integers as PeriodData and PeriodSpec.  

The field RecurPeriodSpec is created as follows:


RecurPeriodSpec = PeriodSpec + (PeriodData shl 16)

So, when reading RecurPeriodSpec, you would perform the following operations to retrieve PeriodData and PeriodSpec:


PeriodData = RecurPeriodSpec SHR 16


PeriodSpec = RecurPeriodSpec AND FFFF (hex)

Note: Hex FFFF equates to 00000000000000001111111111111111 when viewing our 32 bit RecurPeriodSpec in binary form, or 65535 in decimal form.

OK, now that we’ve broken down RecurPeriodSpec, let’s look at how RecurData and RecurSpec are used depending on what value was in the PERIOD field:

PeriodSpec is going to be the same for every period type.  It always refers to the frequency.  For example, on a Daily repeat, PeriodSpec would contain 1 if the activity repeats every day, 2 if it repeats every 2 days, etc..

PeriodData differs depending on the period as follows:

DAILY:


PeriodData = 0 (not used)

WEEKLY:

PeriodData contains a bitwise representation of the days of the week.  Beginning with Sunday, you shift left by the number of days, and set that bit accordingly.  If the activity falls on a particular day, that bit is set to 1.  For example, if the activity occurs on Tuesday,  You take 1 and shift it left by 3, resulting in a binary value of 1000 (or 8 in decimal form).  

If the activity falls on multiple days, you OR the days together.  For example, if the activity falls on Tuesday and Thursday, you would get a final binary value of 101000, or 40 in decimal form.

DAY OF MONTH:


PeriodData = <week of month> + (<day of week> SHL 3)

<week of month> is an integer from 0 to 4.

<day of week> is an integer from 1 to 7.

Both numbers are stored within PeriodData by shifting the day of the week over by 3 bits (since 3 bits is the maximum size of <week of month>).

You would read PeriodData for a “Day of Month” activity as follows:


<week of month> = PeriodData AND 7 (decimal)


<day of week> = PeriodData SHR 3

MONTHLY:


PeriodData = 0 (not used)

DAY OF YEAR:


PeriodData = <week of month> + (<day of week> SHL 3) + (<month> SHL 6)

Day of Year is very similar to Day of Month, except we need to keep track of the Month in addition to the Week and Day.  The month is stored in PeriodData by shifting it left 6 bits (so that it resides to the left of the week and day).


<week of month> = PeriodData AND 7 (decimal)


<day of week> = PeriodData SHR 3

<month> = PeriodData SHR 6

YEARLY:


PeriodData = 0 (not used)

RECURSKIP Field:

So, now we’ve saved the “best” for last.  The RecurSkip field contains a 255 character string.  That string is being used to represent up to 1530 bits, or 6 bits per character.  Each bit represents an occurrence of the activity, and is turned on if we’re skipping that particular occurrence.  1530 is OK for now because SalesLogix allows a maximum of  999 occurrences of an activity.

We’re going to be using a string constant in our calculations that we’ll call SixBitString, as follows:

SixBitString = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ?!'

To determine if a particular occurrence is being skipped for a particular repeating activity:

1. We need to decide which character within the string that we want to work with.  This is determined by dividing the occurrence number (let’s call it  <x>) by 6 and rounding it DOWN to the nearest integer, then adding 1.  Let’s call this result <n>.  We’re going to be working with the <n>th character in the RecurSkip string.  If the RecurSkip string is less than <n> characters long, we know that occurrence <x> is not currently a skip date.

2. Take the  character from step 1 and find its position within “SixBitString”, then subtract 1.  Let’s call this <CharPos>.

3. Now we get to use the Modulus operator!  Take the original occurrence number (<x>), and Mod it by 6.  We’ll call the result <y> (<x> mod 6 = <y>).

4. Now we’ll perform a calculation using <CharPos> and <y> to determine if the occurrence in question is a skip date.  The calculation is: 

((<CharPos> SHR <y>) AND 1) 

   
If the result is 1, then occurrence <x> is a skip date.

So, the above steps take us through READING the RecurSkip string.  To set a skip date, follow these steps:

1. We need to decide which character within the string that we want to work with.  This is determined by dividing the occurrence number (<x>) by 6 and rounding it DOWN to the nearest integer, then adding 1.  Let’s call this result <n>.  We’re going to be working with the <n>th character in the RecurSkip string.  If the RecurSkip string is less than <n> characters long, we’ll need to add ‘0’s onto the end of the string until it is <n> characters long.

2. Take the character from step 1 and find its position within “SixBitString”, then subtract 1.  We’ll call this <CharPos>.

3. Take the original occurrence that we want to skip (or remove from the skip list) (<x>) and Mod it by 6, to come up with <y> (<x> mod 6 = <y>).

4. Perform the following calculation using <CharPos> and <y>:

If we want to add occurrence <x> as a skip date:

<NewCharPos> = <CharPos> OR (1 SHL <y>)



If we want to remove occurrence <x> from the skip date string:




<NewCharPos> = <CharPos> AND (NOT (1 SHL <y>))

5. Add 1 to  <NewCharPos> and go to that position in <SixBitString>.  This is the new character to place in position <n> of the RecurSkip string.

Well, that was fun.  Perhaps we should run through a couple of examples.   First, let’s read a simple RecurSkip string.  Then we’ll add a skip date to that same string.

For our example, let’s say we have an activity that repeats 20 times.  The current value of RECURSKIP is “4”.

First of all, knowing that each character position contains the skip information for up to 6 occurrences, we know that none of the occurrences from 7 to 20 are being skipped (because there is no data past the first character).  Let’s take a look at occurrences 2 and 3 to see if either of them are being skipped.  

First, let’s check occurrence 2.  Let’s follow the steps from above:

1. int(2 / 6) + 1 = 1.  We’re going to look at the first character in the RECURSKIP string.  Of course, we already knew that because there is only one character in this string.

2. The character at position 1 is ‘4’.  Looking at “SixBitString”, se see that character ‘4’ is in the 5th position.  Subtracting 1, we get the number 4.

3. 2 mod 6 = 2

4. ((4 SHR 2) AND 1) = 1, so occurrence 2 is a skip date.

Now let’s check occurrence 3:

1. int(3 / 6) + 1 = 1.  Once again, we’re using the first character in RECURSKIP.

2. Step two here is the same as step 2 when we checked occurrence 2.

3. 3 mod 6 = 3.

4. ((4 SHR 3) AND 1) = 0, so occurrence 3 is not being skipped.

Next, let’s say we want to skip occurrence 16 in our recurring activity:

1. int(16 / 6) + 1 = 3.  We’re going to set one of the bits in the 3rd character of the RECURSKIP string.  Since the string currently only has 1 character, we’ll add 2 ‘0’s, giving us “400”.

2. We now have a ‘0’ in position 3 of our string.  Looking at “SixBitString”, we see that ‘0’ is in the 1st position.  Subtracting 1 gives us 0.

3. 16 mod 6 = 4.

4. 0 OR (1 SHL 4) = 16

5. 16 + 1 = 17.  Looking in the 17th position of “SixBitString”, we find ‘g’.  We put ‘g’ in the 3rd position of the RecurSkip string, giving us a new RecurSkip string of “40g”.

